Fuel processing microreactors for hydrogen production in micro fuel cell applications
نویسندگان
چکیده
The use of microreactors for in-situ and on-demand chemical processing and analysis is gaining increasing importance as the field of microreaction engineering matures from the stage of being regarded as a theoretical concept to a technology with significant industrial applications [1,2,3]. The objective of this work is to demonstrate a working microreaction system for use as a sustained source of hydrogen fuel for miniature proton exchange membrane (PEM) fuel cells through the catalytic steam reforming of methanol. The complete reformer-fuel cell unit can be considered as an alternative to conventional sources of electricity such as batteries for laptop computers and mobile phones due to its ability to provide an uninterrupted supply of electricity as long as a supply of methanol and water can be provided. The microreformer-fuel cell combination has the advantage of not requiring the tedious recharging cycles needed by conventional rechargeable lithium-ion batteries. Also, the energy storage density per unit volume/weight of this system is higher than that of batteries, which translates into less frequent 'recharging' through the refilling of methanol fuel.
منابع مشابه
Effect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملOn the Efficiency of the Fuel Cell Vehicles with Onboard Hydrogen Generation
The present paper explores the impact of an on-board hydrogen harvesting system (fuel reformer) on the overall efficiency of a fuel-cell powered vehicle. Various methods of hydrogen production for automotive applications have been discussed first. As the hydrogen production is one of the major challenges for application of proton exchange membrane (PEM) fuel cells, especially in vehicular indus...
متن کاملCyclic Regeneration of Cu/ZnO/Al2O3 Nano Crystalline Catalyst of Methanol Steam Reforming for Hydrogen Production in a Micro-Fixed-Bed Reactor
Hydrogen can be produced for fuel cell applications by using methanol steam reforming reaction. In this article, a method was developed for regeneration of accelerated deactivated methanol-steam-reforming catalyst. Successive deactivation–regeneration cycles were studied in a 250 hours test for the first time including 6 regeneration cycles. It is shown that regeneration of the catalyst in ...
متن کاملEffect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملStudies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications
Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...
متن کامل